Optimization of dynamic microwave-assisted extraction of Armillaria polysaccharides using RSM, and their biological activity

Chen Chen 1, Yun Shao*, 1, Yanduo Tao 1, Huaixiu Wen 1

Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, PR China

ARTICLE INFO

Article history:
Received 22 April 2015
Received in revised form 2 July 2015
Accepted 7 July 2015
Available online 16 July 2015

Keywords:
Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc
Polysaccharide
Dynamic microwave-assisted extraction
Response surface methodology
Biological activity

ABSTRACT

We used the Box–Behnken design to optimize polysaccharide extraction from Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc. The independent factors included extraction time (X1), microwave power (X2) and water to raw material ratio (X3). The experimental values were fitted to a second-order polynomial equation using multiple regression analysis and a statistical method. Analysis of Variance results indicated that all factors including X1, X2 and X3 had an impact on Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc polysaccharide extraction. The optimal conditions for efficient yield of polysaccharide, giving a maximum yield of 8.43%, were: X1 = 30.24 min, X2 = 600.6 W and X3 = 40 mL/g. The model was verified by modifying the optimal conditions (X1 = 30 min, X2 = 601 W and X3 = 40 mL/g) for practical application. A pilot scale test was also carried out under optimal conditions. The obtained yields 8.40 ± 0.12% and 8.34 ± 0.25% were comparable with the optimized condition, which indicated that our model is accurate. Fourier transform infrared spectroscopy characterization revealed that the extracted polysaccharide produced typical absorption peaks. Oxygen radical absorbance capacity results showed the polysaccharides had good potential as an antioxidant. Moreover, the polysaccharide showed relatively strong inhibitory activity on the growth of NCI-H446 cells.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since ancient times, a large variety of mushrooms have been used as food, medicine, and functional resources in many Asian countries because of their diverse biological activities (Hoshi et al., 2005). Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc is a special Chinese medicinal and edible mushroom. It is mainly distributed in the meadows and grasslands of Qinghai-Tibet plateau and is used as a traditional Tibetan medicine for the treatment of dizziness, headaches, neurasthenia, insomnia, numbness in limbs, and infantile convulsions (Yang et al., 1989). Previous phytochemical studies have demonstrated that proteins, polysaccharides, and alkaloids are the major bioactive constituents of this fungi. Among these constituents, polysaccharides have not been researched. To the best of our knowledge, there are no papers describing the optimization of polysaccharides extractions from Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc.

Extraction is very important for further research into, and development and application of Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc polysaccharides named as ALSP. In recent years, dynamic microwave-assisted extraction (DMAE) has been successfully applied to numerous biologically active compounds from a wide variety of natural resources (Liu, Dang, Wang, 2013; Martins, Aguilar, Garza-Rodriguez, Mussatto, & Teixeira, 2010; Wang et al., 2010). This technique consists of the penetration of microwave energy into the material structure, which produces a volumetrically distributed heat source due to molecular friction resulting from dipolar rotation of polar solvents and from the conductive migration of dissolved ions, accelerating the mass transfer of target compounds. In general, the compounds are extracted more selectively and more quickly by this technique with similar or better yields compared with conventional extraction processes. Moreover, the technique, uses less energy and solvent, and is therefore more environmentally friendly (Eskilsson & Bjoklund, 2000; Bélanger & Paré, 2006; Srogi, 2006). Response surface methodology (RSM) has been reported to be an effective tool for optimization of a process when the independent variables have a combined effect on the desired response. RSM is a collection of statistical and mathematical system that has been successfully used for developing, improving and optimizing such processes (Koocheki et al., 2008; Wu et al., 2007). The main idea...
behind RSM is the use of a sequence of designed experiments to obtain an optimal response. Using statistics, it explores the relationships between several explanatory variables and one or more response variable. The Box–Behnken design (BBD) is a type of response surface design: it is an independent quadratic design and there is no embedded factorial or fractional factorial design. In this design, the treatment combinations are at the midpoints of the edges of the process space and at the center. These designs are rotatable (or near rotatable) and require three levels of each factor. It is more efficient and easier to arrange and interpret experiments in comparison with others.

A great deal of attention has been paid to polysaccharides in recent years owing their unique bioactivities and chemical structures. A large number of polysaccharides have been reported to exhibit varied biological activities, such as antioxidation, anti-inflammatory, antitumor, antiulcer, antiviral, and immunological activities (Zhong, Lin, Wang, & Zhou, 2012; Liao, Guo, & Lin, 2011; Zhu et al., 2011; Simas-Tosin et al., 2012; Simas-Tosin Thetsrimuang, Khammuang, Chiablaem, Srisomsap, Sarnthima, Zhu et al., 2011; Simas-Tosin, 2012). However, there are no papers describing the activity of polysaccharides from Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc. (500 g) was ground in a high speed disintegrator (SF-2000, Chinese Traditional Medicine Machine Works, Shanghai, China) to obtain a fine powder. To remove any substances that would affect the color, the powder was added to 80 mL/100 mL ethanol (2000 mL) in a water bath at 85 °C for 2 h. After incubation, the mixture was centrifuged at 3580 × g for 10 min, and the insoluble residue was treated again as mentioned above. The mixture was centrifuged again. After the insoluble residue had been dried in an oven at 50 °C, each pre-treated sample (1 g) was extracted using water for a designed extraction time, microwave power, and water-to-solid ratio. The water extraction solutions were separated from insoluble residue by centrifugation (6000 rpm for 8 min), and then precipitated by the addition of ethanol to a final concentration of 85 mL/100 mL. Protein was removed using the Sevag method. The precipitate was separated by centrifugation (5000 × g for 8 min) and air-dried for 12 h. The content of total polysaccharides was estimated by the phenol-sulfuric acid method (Dubois, Gilles, Hamilton, Rebers, & Smith, 1956). The yield of ALSP (%) was calculated as follows:

\[
\text{Yield of ALSP} = \frac{\text{the polysaccharides content of extraction (g)}}{\text{weight of powder(g)}},
\]

The polysaccharides content of extraction (g)

2.3. Experimental design and statistical analysis

RSM was used to estimate the effect of independent variables (extraction time, \(X_1\); microwave power, \(X_2\) and water to raw material ratio, \(X_3\) on the extraction yield of ALSP (%). A BBD was employed for designing the experimental data. For statistical calculation, the variables were coded by the following equation:

\[
Xi = \frac{Xi - Xo}{\Delta Xi}
\]

where \(Xi\) is the independent variable coded value, \(Xi\) is the independent variable real value, \(Xo\) is the independent variable real value on the center point. The range of independent variables, a BBD matrix, and the response value carried out for developing the model are listed in Table 1.

The whole designed experiment consisted of 17 trial points in random order. These trials were divided into 12 factorial points, and 5 replicates, which were used for the estimation of a pure error sum of squares at the center of the design. The response value in each trial was an average of duplicates. Based on the BBD experimental data, regression analysis was carried out and fitted into the empirical quadratic second-order polynomial model:

\[
Y = A0 + A1X1 + A2X2 + A3X3 + A12X1X2 + A13X1X3 + A23X2X3 + A11X1^2 + A22X2^2 + A33X3^2
\]

where \(Y\) is the predicted response, and \(X1, X2\) and \(X3\) are input variables. \(A0\) is a constant and \(A1, A2, A3\) are linear coefficients. \(A12, A23\) and \(A13\) are cross-product coefficients and \(A11, A22, A33\) are quadratic coefficients. The model evaluated the effects of each independent variable on the response. The experimental design was analyzed and the predicted data were calculated using the Design-Expert software (v.8.0 trial, Stat-Ease, Inc., Minneapolis, USA) to estimate the response of the independent variables. Subsequently, three additional experiments were conducted to verify the validity of the statistical experimental strategies.

2.4. FTIR of ALSP

ALSP was mixed with spectroscopic grade potassium bromide powder, ground, and pressed into 1 mm pellets for FTIR measurement. FTIR spectra of the ALSP were determined using a Bruker TENSOR 27 FT-IR spectrometer (Bruker, Germany) in the frequency range of 4000–400 cm⁻¹.

2.5. SEM

The morphological features of the ALSP were studied with a Zeiss EVO10 Field Emission Scanning Electron Microscope (Carl Zeiss AG, Germany). The dried sample was mounted on a metal stub and sputtered with gold to make the sample conductive.

Table 1: Levels of variables employed in the present study for the construction of Box–Behnken design (BBD)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coded variables</th>
<th>Actual variables</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction time (min)</td>
<td>(X_1)</td>
<td>(X_1)</td>
<td>-1 0 1</td>
</tr>
<tr>
<td>Microwave power (W)</td>
<td>(X_2)</td>
<td>(X_2)</td>
<td>20 30 40</td>
</tr>
<tr>
<td>Water to solid (mL/g)</td>
<td>(X_3)</td>
<td>(X_3)</td>
<td>500 600 700</td>
</tr>
</tbody>
</table>
well plate at a density of approximately 5000 cells/mL (100
Brie thiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Mosmann, 1983).

the MTT-based colorimetric method (MTT is 3-(4,5-dimethyl
dihydrochloride (AAPH) in a total volume of 200
fl were perfomed at 37 °C using a fluorescence spectrometer
(Fluoroskan Ascent, Thermo Labsystems, USA). The final ORAC values were expressed as micromole Trolox Equivalents per gram yam flour (μmol TE/g). Each sample was tested at 10 concentrations in triplicate.

to the pattern of the interactions between the variables. The
F-test had a very high model F-value (73.85) and very low P-values
(P < 0.0001). There is only a 0.01% chance that a “Model F-value”
that large could be due to noise. The smaller the F-values, the bigger
the significance of the corresponding coefficient, which implies the

sulfoxide was added into each well for the dissolution of the for-

mazan crystals. The absorbance of each well was read at 492 nm
using the Varioskan Flash spectral scan multimode plate reader.
The antiproliferative activity was calculated according to the for-

mula below:

\[
\text{Antiproliferative activity (\%) = } \frac{A_c - A_s}{A_c - A_b} \times 100
\]

where \(A_c \) is the absorbance of samples, \(A_s \) is the absorbance of the control (without sample), and \(A_b \) is the absorbance of the blank (the absorbance of dimethyl sulfoxide).

3. Result and discussion

3.1. Model fitting and statistical analysis

To examine the combined effects of the variables extraction
time (min), microwave power (W) and water to raw material ratio
(ml/g) on the crude polysaccharide extraction by RSM, a BBD of 12
runs with five center points (for estimation of pure error) leading to
a set of experiments was performed randomly. The experimental
results are summarized in Table 2. By applying multiple regression
analysis the experimental data, the predicted response \(Y \) (the yield of polysaccharides) was obtained using the following equation:

\[
Y = 6.57 + 0.086 X_1 - 0.2 X_2 + 2.55 X_3 + 0.25 X_1 X_2
- 0.042 X_1 X_3 + 0.2 X_2 X_3 - 0.971 X_1^2 - 0.88 X_2^2 - 0.69 X_3^2
\]

A summary of ANOVA of the experimental results of the BBD is
provided in Table 3. The F-test was used to check the statistical
significance of the regression equation. The ANOVA was done using
the software Design-Expert to determine whether or not the
quadratic model was significant. P-values were used as a tool to
check the significance of each coefficient, which in turn might
indicate the pattern of the interactions between the variables. The

F-test had a very high model F-value (73.85) and very low P-values
(P < 0.0001). There is only a 0.01% chance that a “Model F-value”
that large could be due to noise. The smaller the F-values, the bigger
the significance of the corresponding coefficient, which implies the

Table 2
Box–Behnken design (BBD) matrix of the three variables in coded units and response values for the extraction rate of the polysaccharides.

<table>
<thead>
<tr>
<th>Run</th>
<th>Time (min)</th>
<th>Microwave power (w)</th>
<th>Ratio of water to raw material (ml/g)</th>
<th>Polysaccharide yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>700</td>
<td>45</td>
<td>7.26 7.38</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>700</td>
<td>45</td>
<td>6.42 6.82</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>700</td>
<td>60</td>
<td>7.65 7.51</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>700</td>
<td>30</td>
<td>5.65 5.69</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>500</td>
<td>45</td>
<td>6.84 6.66</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>600</td>
<td>45</td>
<td>8.64 8.84</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>500</td>
<td>30</td>
<td>5.75 5.89</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>600</td>
<td>45</td>
<td>8.97 8.84</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>600</td>
<td>60</td>
<td>9.05 5.97</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>600</td>
<td>60</td>
<td>7.09 7.05</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>600</td>
<td>45</td>
<td>8.85 8.84</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>500</td>
<td>60</td>
<td>6.55 6.70</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>600</td>
<td>30</td>
<td>5.54 5.52</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>600</td>
<td>45</td>
<td>8.79 8.84</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>500</td>
<td>45</td>
<td>7.24 7.12</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>600</td>
<td>30</td>
<td>5.65 5.49</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>600</td>
<td>45</td>
<td>8.93 8.84</td>
</tr>
</tbody>
</table>

Table 3
Analysis of variance of the experimental result of the BBD.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Sum of squares</th>
<th>df</th>
<th>Mean square</th>
<th>F-value</th>
<th>p-value prob. > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>24.00</td>
<td>9</td>
<td>2.67</td>
<td>73.85</td>
<td><0.0001</td>
</tr>
<tr>
<td>A</td>
<td>0.020</td>
<td>1</td>
<td>0.020</td>
<td>0.55</td>
<td>0.4827</td>
</tr>
<tr>
<td>B</td>
<td>0.11</td>
<td>1</td>
<td>0.11</td>
<td>2.92</td>
<td>0.1314</td>
</tr>
<tr>
<td>C</td>
<td>13.65</td>
<td>1</td>
<td>13.65</td>
<td>378.05</td>
<td><0.0001</td>
</tr>
<tr>
<td>AB</td>
<td>0.26</td>
<td>1</td>
<td>0.26</td>
<td>7.20</td>
<td>0.0314</td>
</tr>
<tr>
<td>AC</td>
<td>0.016</td>
<td>1</td>
<td>0.016</td>
<td>0.43</td>
<td>0.5317</td>
</tr>
<tr>
<td>BC</td>
<td>0.37</td>
<td>1</td>
<td>0.37</td>
<td>10.14</td>
<td>0.00154</td>
</tr>
<tr>
<td>A^2</td>
<td>3.93</td>
<td>1</td>
<td>3.93</td>
<td>108.69</td>
<td><0.0001</td>
</tr>
<tr>
<td>BB</td>
<td>3.23</td>
<td>1</td>
<td>3.23</td>
<td>89.37</td>
<td><0.0001</td>
</tr>
<tr>
<td>CC</td>
<td>10.29</td>
<td>1</td>
<td>10.29</td>
<td>284.33</td>
<td><0.0001</td>
</tr>
<tr>
<td>Residual</td>
<td>0.25</td>
<td>7</td>
<td>0.036</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lack of fit</td>
<td>0.19</td>
<td>3</td>
<td>0.062</td>
<td>3.66</td>
<td>0.1212</td>
</tr>
<tr>
<td>Pure error</td>
<td>0.68</td>
<td>4</td>
<td>0.017</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Correlation total</td>
<td>24.25</td>
<td>16</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Fig. 1. Response surface (3D) showing the effect of the extraction time (X1), microwave power (X2), and water to raw material ratio (X3). (A) The response surface plots of the effect of extraction time (X1), microwave power (X2) and their reciprocal interaction on polysaccharide yield (%). (B) The response surface plots of the effect of extraction time (X1), water to raw material ratio (X3) and their reciprocal interaction on polysaccharide yield (%). (C) The response surface plots of the effect of microwave power (X2), water to raw material ratio (X3) and their reciprocal interaction on polysaccharide yield (%).
3.2. Interaction between process variables

The response surface curves were plotted to investigate the interactions of the variables and to determine the optimal level of each variable for the maximum response. The optimal values of the selected variables were obtained by solving the regression equation using the Design-Expert software. The 3D response surface contour plots were provided as graphical representations of the regression equation. Fig. 1 shows three independent response surface plots and their respective contour plots, which reveal information about the interactions between two variables, while the third variable fixed. Fig. 1(A) shows the effect of extraction time (X1), microwave power (X2), and their reciprocal interaction on polysaccharide extraction yield (%), when water to raw material ration (X3) was fixed at 30 mL/g. The result revealed that the yield increased with the increase in extraction time and microwave power. With a further increase in extraction time and microwave power, the yield began to slight decrease. As shown in Fig. 1(B), the polysaccharide yield increased with increasing extraction time (X1) and water to raw material ration (X3). With a further increase in extraction time, the yield showed slight decrease. As shown in Fig. 1(C), the polysaccharide yield increased with an increase in microwave power (X2) and water to raw material ratio (X3). With a further increase of microwave power, the yield showed a slight decrease.

3.3. Optimization of the variables

The optimum extraction conditions (X1 = 30.24 min, X2 = 600.6 W and X3 = 40.0 mL/g) for maximum polysaccharides yield were estimated using the model equation by solving the regression equation and analyzing the response surface contour plots. The theoretical maximum polysaccharides extraction yield predicted under the above conditions was 8.43%.

3.4. Validation of the models

To validate the adequacy of the model equations, a verification experiment was carried out under optimal conditions: extraction time = 30 min; microwave power = 601 W; and water to raw material ratio = 40 mL/g. The mean yield value 8.40 ± 0.12% and (n = 3) obtained from real experiments demonstrated the validity of the RSM model, and indicated that the model was adequate for the extraction process. Also, a pilot scale test (100 g raw material) was carried out under optimal conditions, and the mean yield value was 8.34 ± 0.25% (n = 3). Therefore, the results yield values from the laboratory experiment and the pilot scale test are in good agreement with the predicted value.

3.5. FTIR spectroscopy

FT-IR spectroscopy is a powerful technique for the identification of characteristic organic groups in the polysaccharides. In order to confirm the identity of ALSP, it was analyzed by FT-IR. As shown in Fig. 2, the FTIR spectra of ALSP shows a broad peak at around 3500 cm⁻¹, the band between 3600 and 3200 cm⁻¹ represents the
stretching vibration of O–H, which produces glycosidic structures of the sugar residues. The band at 2947 cm⁻¹ was associated with stretching vibration of C–H in the sugar ring (Lai, Wen, Li, Wu, & Li, 2010). The band at 1630 cm⁻¹ arises from absorption owing to carbon–oxygen double-bond asymmetric stretching vibration (Cerna et al., 2003). FT-IR spectra in the wave number between 850 and 1200 cm⁻¹ is considered as the “finger print” region for carbohydrates, which is unique to a compound. The strong extensive absorption in the region of 1000–1200 cm⁻¹ is due to C–O–C stretching vibration and stretching vibrations of C–O–H side groups (Barros et al., 2002). These results indicated that ALSP possesses typical absorption peak of polysaccharides.

3.6. SEM analysis

To study the surface characteristics of ALSP, we subjected the powder to SEM. The scanning electron micrographs of ALSP are shown in Fig. 3. The micrographs of ALSP shows distinct particles of fairly defined shape. Fig. 3(b) shows some irregular-shaped particles which point to the amorphous nature of the powder. The shape and structure, or the surface topology of the polysaccharide may be affected by the method of extraction and purification or preparation of the product (Nep & Conway, 2010). In summary, the polysaccharides from Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc. extracted by DMAE were qualitatively identified by comparing their micrographs with those of the standards.

3.7. ORAC

The ORAC assay can be used to quantify the antioxidant capacity of foods by measuring the peroxyl radical scavenging activity of the compounds present (Cao & Prior, 1999). Generally, the ORAC assay is highly regarded owing to its use of biologically relevant free radicals and also its integration of both degree and time of inhibition in to a single quantity (Awika, Rooney, Prior, & Cisneros-Zevallos, 2003).

Dubost et al. analyzed a wide variety of mushrooms using the ORAC assay and found a range between 39 μmol TE/g and 138 μmol TE/g (Dubost, Ou, & Beelman, 2007). As shown Table 5, the ORAC value of ALSP was 94 μmol TE/g. The antioxidant activities of the polysaccharides were related to their compositions and structural features, including content of proteins and uronic acid, molecular weights, monosaccharide composition and types of glycosidic (Li, Fu, Huang, Luo, & You, 2015; Yang et al., 2009). In summary, the results of the in vitro antioxidant assays indicate that ALSP has potential antioxidant activity, and could be utilized as an antioxidant in the pharmaceutical and food industries.

3.8. Anticancer activity

It has been reported that polysaccharides play a certain role in anti-tumor activity. However, there is little information regarding the anticancer potentials of polysaccharides from Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc. In the present study, therefore, the anticancer activity of ALSP, in vitro, was evaluated. The viability of NCI–H446 cells treated with ALSP for 24 h was determined using a colorimetric MTT-based assay.

As shown in Table 5, the polysaccharides exhibited a dose-dependent activity within the concentration range 0.02–0.16 mg/mL, and the inhibitory effects of ALSP on NCI–H446 cells increased significantly (P < 0.05) with the increase of sample concentration. The highest inhibition rate on NCI–H446 cells was 61.5%, at a concentration of 0.16 mg/mL. However, when the concentration of ALSP was increased, the cancer cells inhibition rate decreased. We speculate that this effect might arise because the cells induce resistance at high drug concentrations. It has been reported that the antitumor effects of polysaccharides depend on their molecular weight, chemical composition, structure of the polymer backbone, and degree of branching (Gan, Ma, Jiang, Xu, & Zeng, 2011). Jiang reported that if compounds can enhance the level of anti-oxidation and remove the reactive oxygen species in cancer cells, they may inhibit the cell growth, which might explain its high antitumor activity (Jiang, Wang, Liu, Gan, & Zeng, 2011). The mechanism for the inhibitory activity of cancer cell growth of polysaccharide is complex. So the mechanism for the inhibitory activity of cancer cell growth of polysaccharide from Armillaria luteo-virens (Alb. et Schw. Fr.) Sacc. needs further study.

Table 5

<table>
<thead>
<tr>
<th>Sample</th>
<th>ORAC value (μmol TE/g)</th>
<th>Concentration (mg/mL)</th>
<th>Antiproliferative activity on NCI–H446 cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSP</td>
<td>94</td>
<td>0.02</td>
<td>5.02 ± 1.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.04</td>
<td>16.85 ± 1.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
<td>47.97 ± 2.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.16</td>
<td>61.5 ± 2.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.31</td>
<td>57.49 ± 2.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.63</td>
<td>54.93 ± 0.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
<td>50.64 ± 1.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>48.75 ± 2.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.55</td>
<td>2.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.73</td>
<td>0.78</td>
</tr>
</tbody>
</table>

4. Conclusion

In the past decade, it has been found that the polysaccharides in plants are not only valuable as an energy resource but play a very important role in biological processes. RSM was used to determine the optimum process parameters that produce the maximum extraction yield. ANOVA showed that all three parameters extraction time, microwave power and water to raw material ratio, were significant and quadratic models were obtained for predicting the responses. In the present study, we obtained optimum conditions for the extraction of ALSP. The optimum conditions were found to be: extraction time (X₁) = 30.24 min; microwave power (X₂) = 600.6 W; and water to raw material ratio (X₃) = 40 mL/g. For practical applications, the modified parameters were chosen as X₁ = 30 min, X₂ = 601 W, X₃ = 40 mL/g. These conditions produced a real experiment yield of 8.40 ± 0.12% and a pilot scale test yield of 8.34 ± 0.25%, which were in a good agreement with the predicted value. FTIR characterization of the extracted polysaccharide revealed typical absorption peaks. As expected, antioxidant tests in vitro indicated that the polysaccharides showed rational ORAC activities. We found that ALSP can directly inhibit the proliferation of lung cancer cells. Further work on purification, function evaluation, and application is in progress to improve the effectiveness of ALSP.

Acknowledge

The work was support by the New Product Research Programs of Qinghai Province (2012-G-X05).

References

